UNIVERSITY HEALTH BUILDING LOCATED IN THE MID-ATLANTIC REGION

THESIS FINAL PRESENTATION EVAN LANDIS || STRUCTURAL OPTION ADVISOR || HEATHER SUSTERSIC

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

- Introduction Structural Overview
- Proposal
- Lateral System Redesign
- Lateral System Cost Foundation Redesign
- Foundation Cost/Schedule
- Building Envelope
- Conclusion

INTRODUCTION

STRUCTURAL OVERVIEW

FOUNDATION

- Spread footings

FLOOR SLABS

- f'c = 6-8ksi

LATERAL SYSTEM

- Concrete Moment Frames
- One Shear wall

ROOF SYSTEM

PROJECT INFO

Cost: \$56 Million Size: 161,000 SF Floors: 7

- Grade beam tie ins for basement retaining walls

- Two-way post tensioned slabs

- Green roof on post tensioned slab

- Introduction Structural Overview
- Proposal
- Lateral System Redesign
- Lateral System Cost Foundation Redesign
- Foundation Cost/Schedule
- Building Envelope
- Conclusion

PROJECT INFO

Cost: \$56 Million Size: 161,000 SF Floors: 7

STRUCTURAL OVERVIEW

FOUNDATION

- Spread footings

FLOOR SLABS

- f'c = 6-8ksi

LATERAL SYSTEM

- Concrete Moment Frames
- One Shear wall

ROOF SYSTEM

- Grade beam tie ins for basement retaining walls

- Two-way post tensioned slabs

- Green roof on post tensioned slab

- Introduction Structural Overview
- Proposal
- Lateral System Redesign
- Lateral System Cost Foundation Redesign
- Foundation Cost/Schedule
- Building Envelope
- Conclusion

PROJECT INFO

Cost: \$56 Million Size: 161,000 SF Floors: 7

STRUCTURAL OVERVIEW

FOUNDATION

- Spread footings

FLOOR SLABS

- f'c = 6-8ksi

LATERAL SYSTEM

- Concrete Moment Frames
- One Shear wall

ROOF SYSTEM

- Grade beam tie ins for basement retaining walls

- Two-way post tensioned slabs

- Green roof on post tensioned slab

- Introduction Structural Overview
- Proposal
- Lateral System Redesign
- Lateral System Cost Foundation Redesign
- Foundation Cost/Schedule
- Building Envelope
- Conclusion

PROJECT INFO

Cost: \$56 Million Size: 161,000 SF Floors: 7

STRUCTURAL OVERVIEW

FOUNDATION

- Spread footings

FLOOR SLABS

- f'c = 6-8ksi

LATERAL SYSTEM

- Concrete Moment Frames
- One Shear wall

ROOF SYSTEM

- Grade beam tie ins for basement retaining walls

- Two-way post tensioned slabs

- Green roof on post tensioned slab

- Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope
- Conclusion

THESIS PROPOSAL

STRUCTURAL DEPTH

COST/SCHEDULE ANALYSIS BREADTH

- To determine the cost associated with the changes to the lateral and foundation systems
- Determine the increase to the building schedule due to changes

- Owners want to open a branch campus in Orlando, Florida

SCOPE

- Lateral System Analysis
 - Foundations check

BUILDING ENVELOPE ANALYSIS

- Determine the condensation point in a typical wall section
- Determine if the R-Value meets minimum standards for new location

MAE REQUIREMENTS

- AE 530 Computer Modeling of Building Structures
- AE 542 Building Enclosure Science and Design

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

ETABS MODEL

- All structural elements were modeled
- Modulus of Elasticity was halved to allow for the inelastic response of concrete members
- the model
- Floor Slabs modeled as rigid diaphragms - Shear walls modeled as membrane elements

STRUCTURAL DEPTH

- Live Loads and Superimposed Dead Loads were placed on

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

ORIGINAL LATERAL SYSTEM

STRUCTURAL DEPTH

- Designed for seismic loading - Very few moment frames due to column discontinuities

OUTLINE

Introduction Structural Overview Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

LATERAL SYSTEM ADDITIONS

- h/400 = 3.3"

- Designed for wind velocity of 145mph (Orlando Building Code) - Addition of (7) 12" thick shear walls of varying lengths - Alterations to existing shear wall

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

LATERAL SYSTEM ADDITIONS

- h/400 = 3.3"

STRUCTURAL DEPTH

- Designed for wind velocity of 145mph (Orlando Building Code) - Addition of (7) 12" thick shear walls of varying lengths - Alterations to existing shear wall

Original System

New System

OUTLINE

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

SHEAR WALL DESIGN

- Designed with boundary elements
- Walls of same length designed with same rebar configuration for ease of construction
- Typ. (6) or (8) #9's or #10's in boundary element - #5's @ 12" Vertical
- #5's @ 12" Horizontal

OUTLINE

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

SHEAR WALL PLACEMENT

- building

- Main goal was to not disrupt the architectural flow of the

- Could not be avoided entirely

Pre-function Space

OUTLINE

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

SHEAR WALL PLACEMENT

- building

- Main goal was to not disrupt the architectural flow of the

- Could not be avoided entirely

Exercise Room (2) Storage Closets AV Storage

Pre-function Space

OUTLINE

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

SHEAR WALL PLACEMENT

- building

- Main goal was to not disrupt the architectural flow of the

- Could not be avoided entirely

Body Composition Room

OUTLINE

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

SHEAR WALL PLACEMENT

- building

- Main goal was to not disrupt the architectural flow of the

- Could not be avoided entirely

Body Composition Room

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

COST/SCHEDULE BREADTH

SHEAR WALL COST INCLUDES

- 4-10ksi concrete
- Rebar
- Formwork -
- Pumping -

- Placement
- Finishing

SHEAR WALL SCHEDULE: Negligible

Wall	Length (ft)	Thickness (ft)	Total
1,6,7	11	1	\$ 51,005.72
4	8	1	\$ 14,924
8,5	10	1	\$ 37,308.76
2	10	1	\$ 15,456
			\$ 119,000

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

ORIGINAL FOUNDATION

- Spread footings
- -
- Typical sizes: 6x6, 5x4, 9x9
- f'c = 5ksi

GOALS

- column

STRUCTURAL DEPTH

Soil Bearing Capacity: 30ksf bedrock

- Design new spread footings for single shear walls and typ.

- To determine percent increase to size

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

FOUNDATION DESIGN

- Trial 1: Spread footings on soil: 2-3ksf
 - Not suitable for loading
- Trial 2: Spread footings on structural fill: 8ksf
 - Typ. Column: 12x12
 - Typ. Shear Wall: no good
- Trial 3: 50ft Caissons: 20ksf bedrock

	Caisson Foundation												
	Shaft Dia.	Bell Dia.	Amount	Cap (ft)	Can Bainforcomont	Caisson Reinforcement							
	(ft)	(ft)	Amount	Cap (IL)	Cap Remolecement	Verticle	Ties						
Column	3.5	8.5	1	5x5	#4's @ 10" O.C. top and bottom each way	(7) #9's	#3's @ 18" from top to 10ft.						
Shear Wall	3	7	2	5x13	#6's @ 10" O.C. top and bottom each way	(7) #8's	#3's @ 16" from top to 10.5ft.						

STRUCTURAL DEPTH

Sandy Soil

Structural Fill

Bedrock

Introduction Structural Overview Thesis Proposal Lateral System Redesign Lateral System Cost Foundation Redesign Foundation Cost/Schedule Building Envelope Conclusion

COST/SCHEDULE BREADTH

FOUNDATION COST INCUDES

- 3ksi concrete caisson
- 5ksi concrete cap _
- Casing and Pumping
- Excavation

- Mobilization
- Haul excess excavation
- Inspection
- Equipment

FOUNDATION SCHEDULE

- 1 caisson per column
- 2 caissons per shear wall
- Original number of spread footings

Proposed System										
Caissons \$ 595,832										
Caisson Caps	\$	38,991								
Original System										
Spread Footings \$ 63,869										
Cost Difference	\$	570,954								

		No. Completed	
Туре	Amount	per Day	Days Needed
Caisson	63	2	32
Spread Footing	48	5	10

22 Days

- Introduction
- Structural Overview
- Thesis Proposal
- Lateral System Redesign
- Lateral System Cost Foundation Redesign Foundation Cost/Schedule
- Building Envelope
- Conclusion

BUILDING ENVELOPE BREADTH

CONDENSATION ANALYSIS

Orlando Climate

- To determine if typical wall section will work in the humid

- Introduction
- Structural Overview
- Thesis Proposal
- Lateral System Redesign
- Lateral System Cost Foundation Redesign Foundation Cost/Schedule
- Building Envelope
- Conclusion

BUILDING ENVELOPE BREADTH

R-VALUE ANALYSIS

- ASHRAE 90.1 Energy Standard for Buildings - R-Value does not include Terra Cotta

	R-Values												
Required R-value R-value of wall													
Location	Climate Zone	(h*ft^2*F/BTU)	(h*ft^2*F/BTU)										
Mid-Atlantic	4	9.5	25.4										
Orlando, Florida	2	5.7	25.4										

- Introduction
- Structural Overview
- Thesis Proposal
- Lateral System Redesign
- Lateral System Cost Foundation Redesign Foundation Cost/Schedule
- Building Envelope Conclusion

LATERAL SYSTEM

- 7 new shear walls
- 1 updated shear wall

FOUNDATION

-

BUILDING ENVELOPE

- No changes necessary

COST

- Shear Walls
- Foundations

CONCLUSION

Change from spread footings to caissons

\$119,000 +<u>\$571,000</u> \$690,000

QUESTIONS?

Special Thanks to the ones that made this possible:

	Shear Wall Cost													
Wall	Floor	Story Height (ft)	Length (ft)	Thickness (ft)	f'c (ksi)	C.Y.	Cos	t/C.Y.		Total				
1,6,7	7	13.5	11	1	4	5.50	\$	397	\$	2,182				
	6	12	11	1	4	4.89	\$	363	\$	1,776				
	5	12	11	1	6	4.89	\$	384	\$	1,879				
	4	12	11	1	6	4.89	\$	384	\$	1,879				
	3	12	11	1	8	4.89	\$	462	\$	2,260				
	2	12	11	1	8	4.89	\$	462	\$	2,260				
	1	18	11	1	10	7.33	\$	650	\$	4,765				
2	7	13.5	10	1	4	5.00	\$	397	\$	1,984				
	6	12	10	1	4	4.44	\$	363	\$	1,615				
	5	12	10	1	6	4.44	\$	384	\$	1,708				
	4	12	10	1	6	4.44	\$	384	\$	1,708				
	3	12	10	1	8	4.44	\$	462	\$	2,055				
	2	12	10	1	8	4.44	\$	462	\$	2,055				
	1	18	10	1	10	6.67	\$	650	\$	4,332				
4	8	18.5	8	1	4	5.48	\$	467	\$	2,558				
	7	13.5	8	1	4	4.00	\$	397	\$	1,587				
	6	12	8	1	4	3.56	\$	363	\$	1,292				
	5	12	8	1	6	3.56	\$	384	\$	1,367				
	4	12	8	1	6	3.56	\$	384	\$	1,367				
	3	12	8	1	8	3.56	\$	462	\$	1,644				
	2	12	8	1	8	3.56	\$	462	\$	1,644				
	1	18	8	1	10	5.33	\$	650	\$	3,465				
8,5	8	18.5	10	1	4	6.85	\$	467	\$	3,198				
	7	13.5	10	1	4	5.00	\$	397	\$	1,984				
	6	12	10	1	4	4.44	\$	363	\$	1,615				
	5	12	10	1	6	4.44	\$	384	\$	1,708				
	4	12	10	1	6	4.44	\$	384	\$	1,708				
	3	12	10	1	8	4.44	\$	462	\$	2,055				
	2	12	10	1	8	4.44	\$	462	\$	2,055				
	1	18	10	1	10	6.67	\$	650	\$	4,332				
							т	otal	Ś	118 694				

		Shear W	all Reinforcin	g							
				Temperature/Shrinkage**							
Wall	Length (ft)	Boundary Element*	Shear	Vertical	Horizontal						
1	11	(8) #9's	None	#5's @ 12"	#5's @ 12"						
2	10	(8) #10's	None	#5's @ 12"	#5's @ 12"						
3	8	(6) #9's	None	#5's @ 12"	#5's @ 12"						
4	8	(6) #9's	None	#5's @ 12"	#5's @ 12"						
5	10	(8) #10's	None	#5's @ 12"	#5's @ 12"						
6	11	(8) #9's	None	#5's @ 12"	#5's @ 12"						
7	11	(8) #9's	None	#5's @ 12"	#5's @ 12"						
8	10	(8) #10's	(8) #10's None #5's @ 12" #5's @								
		*Amount of rebar given per boundary element									
		**Walls 1 and 7 have s	pecial conditions @	🦻 ground level for door ope	ening						

Sec. 13.3. - Ultimate design wind speeds.

APPENDIX

(a) Pursuant to "Note 2," Figure 1609A, of the Building volume of the building code, the ultimate design wind speeds for Risk Category II buildings and other structures within the City is hereby interpolated as 135 miles per hour.

(b) Pursuant to "Note 2," Figure 1609B, of the Building volume of the building code, the ultimate design wind speeds for Risk Category III and IV buildings and other structures within the City is hereby interpolated as 145 miles per hour.

(c) Pursuant to "Note 2," Figure 1609C, of the Building volume of the building code, the ultimate design wind speeds for Risk Category I buildings and other structures within the City is hereby interpolated as 125 miles per hour.

Ord. No. 2012-10, § 1, 3-26-2012, Doc. #1203261201)

Orlando Florida Building Code

Layer	Generic Material	Thick.	R Val.
1	air film (ext), 3/4 in.	0.75	0.17
2	Terra Cotta blk., 2 in.	2.00	0.54
3	cavity, 5-1/2 in.	5.00	0.98
4	rigid ins.,(expand.), 2 in.	2.00	7.90
5	batt ins., 5 in.	5.00	15.24
6	steel (V) liner 3/4 in.	0.72	0.01
7	air film (int), 3/4 in.	0.75	0.64
8			
9			
10			
11			
12			
	Total or (Layer 0)		
•			Þ

	West Wall													
	Story		Trib. Height	Trib. Length							Total Story	Overturning		
Story	height	Elevation	(ft.)	(ft)	K _z	qz	q _h	P _w (psf)	P _I (psf)	Trib. Area	Force (kip)	Moment (ft-k)		
1	0	0.0	9.00	200	0	0	0	0	- 52	1800	93.60	0.00	Perimet	ers
2	18	18.0	15.00	200	0.6	31.57	31.5678	38.83	-52	3000	272.49	4904.73	=	1.15
3	12	30.0	12.00	200	0.7	36.83	36.8291	45.30	-52	2400	233.52	7005.58	G=	0.85
4	12	42.0	12.00	200	0.77	40.51	40.512	49.83	-52	2400	244.39	10264.44	C _p Windward=	0.80
5	12	54.0	12.00	200	0.83	43.67	43.6688	53.71	-52	2400	253.71	13700.35	C _p Lee ward=	-0.50
6	12	66.0	12.00	200	0.87	45.77	45.7733	56.30	-52	2400	259.92	17154.90	K _{zt} =	1.00
7	12	78.0	12.75	200	0.92	48.40	48.4039	59.54	-52	2550	284.42	22184.67	K _d =	0.85
Penthouse	12.5	91.5	16.00	140	0.96	50.51	50 5084	62.13	- 52	2553	291 31	26654.41	Velocity=	145.00
	10.5	110.0	9.25	140	1.02	52.67	52 6652	66.01	-52	1205	152.02	16910.27	GC _{pl} =	0.55
1.0.C. K001	10.0	110.0	5.25	140	1.02	35.07	55.0052	00.01	-32	1295	1,52,62	10010.27		
									Σ.		2,086	118,679		

					So	uth Wa	all						
	Story		Trib. Height	Trib. Length							Total Story	Overturning	
Story	height	Height	(ft.)	(ft)	K _z	qz	q _h	P _w (psf)	P _I (psf)	Trib. Area	Force (kip)	Moment (ft-k)	Perimeters
1	0	0	9.00	130	0	0	53.67	29.51587	-43	1170	85.08	0.00	l= 1.15
2	18	18	15.00	130	0.6	31.57	53.67	50.98196	-43	1950	183.26	3298.77	G= 0.85
3	12	30	12.00	130	0.7	36.83	53.67	54.55964	-43	1560	152.19	4565.79	C_p Windward = 0.80
4	12	42	12.00	130	0.77	40.51	53.67	57.06402	-43	1560	156.10	6556.19	C _p Leeward= -0.30
5	12	54	12.00	130	0.83	43.67	53.67	59.21063	-43	1560	159.45	8610.22	K _{zt} = 1.00
6	12	66	12.00	130	0.87	45.77	53.67	60.6417	-43	1560	161.68	10670.95	K _d = 0.85
7	12	78	12.75	130	0.92	48.40	53.67	62.43054	-43	1657.5	174.75	13630.59	Velocity= 145.00
Penthouse	13.5	91	16.00	90	0.96	50.51	53.67	63.86161	-43	1710	182.73	16628.74	GC _{pl} = 0.55
T.O.C. Roof	18.5	110	9.25	90	1.02	53.67	53.67	66.00822	-43	832.5	90.75	9982.43	
									Σ		1,346	73,944	

	Original Lateral System													
Wind Drift:	North-South	1												
Floor	Story Height (ft)	Story Drift Ratio X (in/in)	Story Drift X (in/in)	Story Drift Ratio Y (in/in)	Story Drift Y (in)	Total Drift X	Total Drift Y	Allowable Total Drift	Acceptable X	Acceptable Y				
8	18.5	0.002661	0.590742	0.000941	0.20890	3.62898	2.05345	3.30	No	Yes				
7	13.5	0.002575	0.41715	0.001531	0.24802	3.038238	1.84455	2.75	No	Yes				
6	12	0.003081	0.443664	0.001914	0.27562	2.621088	1.596528	2.34	No	Yes				
5	12	0.003426	0.493344	0.002184	0.31450	2.177424	1.320912	1.98	No	Yes				
4	12	0.003522	0.507168	0.002205	0.31752	1.68408	1.006416	1.62	No	Yes				
3	12	0.003359	0.483696	0.002049	0.29506	1.176912	0.688896	1.26	Yes	Yes				
2	12	0.002825	0.4068	0.001595	0.22968	0.693216	0.39384	0.90	Yes	Yes				
1	18	0.001326	0.286416	0.000760	0.16416	0.286416	0.16416	0.54	Yes	Yes				
Wind Drift:	East-West													
Floor	Story Height (ft)	Story Drift Ratio X (in/in)	Story Drift X (in)	Story Drift Ratio Y (in/in)	Story Drift Y (in)	Total Drift X	Total Drift Y	Allowable Total Drift	Acceptable X	Acceptable y				
8	18.5	0.000298	0.066156	0.005853	1.29937	0.088	13.55312	3.30	Yes	No				
7	13.5	0.001152	0.001152	0.007756	1.25647	0.022	12.25375	2.75	Yes	No				
6	12	0.002769	0.002769	0.01137	1.63728	0.020	10.99728	2.34	Yes	No				
5	12	0.003811	0.003811	0.01441	2.07504	0.018	9.36000	1.98	Yes	No				
4	12	0.004416	0.004416	0.015385	2.21544	0.014	7.28496	1.62	Yes	No				
3	12	0.004302	0.004302	0.014637	2.10773	0.009	5.06952	1.26	Yes	No				
2	12	0.003408	0.003408	0.011622	1.67357	0.005	2.96179	0.90	Yes	No				
1	18	0.001758	0.001758	0.005964	1.28822	0.002	1.28822	0.54	Yes	No				

	Original Lateral System													
Wind Drift:	North-South	I												
Floor	Story Height (ft)	Story Drift Ratio X (in/in)	Story Drift X (in/in)	Story Drift Ratio Y (in/in)	Story Drift Y (in)	Total Drift X	Total Drift Y	Allowable Total Drift	Acceptable X	Acceptable Y				
8	18.5	0.002661	0.590742	0.000941	0.20890	3.62898	2.05345	3.30	No	Yes				
7	13.5	0.002575	0.41715	0.001531	0.24802	3.038238	1.84455	2.75	No	Yes				
6	12	0.003081	0.443664	0.001914	0.27562	2.621088	1.596528	2.34	No	Yes				
5	12	0.003426	0.493344	0.002184	0.31450	2.177424	1.320912	1.98	No	Yes				
4	12	0.003522	0.507168	0.002205	0.31752	1.68408	1.006416	1.62	No	Yes				
3	12	0.003359	0.483696	0.002049	0.29506	1.176912	0.688896	1.26	Yes	Yes				
2	12	0.002825	0.4068	0.001595	0.22968	0.693216	0.39384	0.90	Yes	Yes				
1	18	0.001326	0.286416	0.000760	0.16416	0.286416	0.16416	0.54	Yes	Yes				
Wind Drift:	East-West													
Floor	Story Height (ft)	Story Drift Ratio X (in/in)	Story Drift X (in)	Story Drift Ratio Y (in/in)	Story Drift Y (in)	Total Drift X	Total Drift Y	Allowable Total Drift	Acceptable X	Acceptable y				
8	18.5	0.000298	0.066156	0.005853	1.29937	0.088	13.55312	3.30	Yes	No				
7	13.5	0.001152	0.001152	0.007756	1.25647	0.022	12.25375	2.75	Yes	No				
6	12	0.002769	0.002769	0.01137	1.63728	0.020	10.99728	2.34	Yes	No				
5	12	0.003811	0.003811	0.01441	2.07504	0.018	9.36000	1.98	Yes	No				
4	12	0.004416	0.004416	0.015385	2.21544	0.014	7.28496	1.62	Yes	No				
3	12	0.004302	0.004302	0.014637	2.10773	0.009	5.06952	1.26	Yes	No				
2	12	0.003408	0.003408	0.011622	1.67357	0.005	2.96179	0.90	Yes	No				
1	18	0.001758	0.001758	0.005964	1.28822	0.002	1.28822	0.54	Yes	No				

APPENDIX

New Lateral System										
Wind Drift: North-South										
Floor	Story Height (ft)	Story Drift Ratio X (in/in)	Story Drift X (in)	Story Drift Ratio Y (in/in)	Story Drift Y (in)	Total Drift X	Total Drift Y	Allowable Total Drift	Acceptable X	Acceptable y
8	18.5	0.002492	0.553224	0.000596	0.13231	3.06885	1.51646	3.30	Yes	Yes
7	13.5	0.002553	0.413586	0.000629	0.10190	2.515626	1.384146	2.75	Yes	Yes
6	12	0.002766	0.398304	0.006390	0.92016	2.10204	1.282248	2.34	Yes	Yes
5	12	0.003032	0.436608	0.000621	0.08942	1.703736	0.362088	1.98	Yes	Yes
4	12	0.003007	0.433008	0.000604	0.08698	1.267128	0.272664	1.62	Yes	Yes
3	12	0.003063	0.441072	0.000559	0.08050	0.83412	0.185688	1.26	Yes	Yes
2	12	0.002443	0.351792	0.000444	0.06394	0.393048	0.105192	0.90	Yes	Yes
1	18	0.001159	0.250344	0.000191	0.04126	0.04126	0.041256	0.54	Yes	Yes
Wind Drift:	Wind Drift: East-West									
Floor	Story Height (ft)	Story Drift Ratio X (in/in)	Story Drift X (in)	Story Drift Ratio Y (in/in)	Story Drift Y (in)	Total Drift X	Total Drift Y	Allowable Total Drift	Acceptable X	Acceptable y
8	18.5	0.000174	0.038628	0.00313	0.69486	0.219	3.24650	3.30	Yes	Yes
7	13.5	0.000169	0.027378	0.00307	0.49734	0.180	2.55164	2.75	Yes	Yes
6	12	0.000337	0.048528	0.003043	0.43819	0.153	2.05430	2.34	Yes	Yes
5	12	0.000134	0.019296	0.003038	0.43747	0.104	1.61611	1.98	Yes	Yes
4	12	0.000174	0.025056	0.002455	0.35352	0.085	1.17864	1.62	Yes	Yes
3	12	0.000194	0.027936	0.002557	0.36821	0.060	0.82512	1.26	Yes	Yes
2	12	0.000134	0.019296	0.00197	0.28368	0.032	0.45691	0.90	Yes	Yes
1	18	0.000059	0.012744	0.000802	0.17323	0.013	0.17323	0.54	Yes	Yes

Wall 1 Le	vel 1					Wall 1 Le	vel 2				
F'c	10	ksi	t=	12	in	F'c	8	ksi	t=	12	in
Lw=	132	in	Mn=	34681	k*in	Lw=	132	in	Mn=	22109	k*in
Nu=	397.5	k	Vu=	161	k	Nu=	204	k	Vu=	135	k
d=	123.96	in				d=	123.96	in			
(#)	No. Bar	Area bar	Grade			(#)	No. Bar	Area bar	Grade		
6	5 6	0.44	60			6	6 6	0.44	60		
Flexure						Flexure					
T=	158.4					T=	158.4				
a=	5.45	<	46.485			a=	4.441176	<	46.485		
.9M=	39919.89	>	34681	k*in		.9M=	29065.07	>	22109	k*in	
						Shear					
						Vc=	486.9515				
							356.093				
						.75Vc=	267.0697				
						Vs=	-176.093				
						Areq=	-0.28411				
						rho=	-0.00197	<	0.0025		

Wall 1 Lev	vel 4					Wall 1 Lev	/el 6					
F'c	6	ksi	t=	12	in	F'c	4	ksi	t=	12	in	
Lw=	132	in	Mn=	12581	k*in	Lw=	132	in	Mn=	5850	k*in	
Nu=	62	k	Vu=	105	k	Nu=	16	k	Vu=	61	k	
d=	123.96	in				d=	123.96	in				
(#)	No. Bar	Area bar	Grade			(#)	No. Bar	Area bar	Grade			
6	6 6	0.44	60			6	6 6	0.44	60			ļ
Flexure						Flexure						
T=	158.4					T=	158.4					
a=	3.601307	<	46.485			a=	4.27451	<	46.485			
.9M=	20997.36	>	12581	k*in		.9M=	18286.67	>	5850	k*in		
												ļ
Shear						Shear						ļ
Vc=	394.7912					Vc=	314.2171					
	450.9477						588.85					
.75Vc=	296.0934					.75Vc=	235.6629					ļ
Vs=	-254.791					Vs=	-232.884					
Areq=	-0.41109					Areq=	-0.37574					
rho=	-0.00285	<	0.0025			rho=	-0.00261	<	0.0025			

APPENDIX

